Data Structures

Обновлено: 2024-12-26
1 мин

Содержание

Tree

class Node:
    def __init__(self, value):
        self.value = value
        self.children = {}

    def insert(self, s, idx):
        # idx: index of the current character in s
        if idx != len(s):
            self.children.setdefault(s[idx], Node(s[idx]))
            self.children.get(s[idx]).insert(s, idx + 1)

Fenwick Tree

class Fenwick: #also known as Binary Indexed Tree (BIT)
    def __init__(self, n):
        self.n = n
        self.bit = [0] * (n+1)

    def add(self, idx, val):
        while idx <= self.n:
            self.bit[idx] += val
            idx += idx & -idx

    def add_range(self, l, r, val):
        self.add(l, val)
        self.add(r+1, -val)

    def query(self, idx):
        #Calculates the sum of the elements from the beginning to idx
        ret = 0
        while idx > 0:
            ret += self.bit[idx]
            idx -= idx & -idx
        return ret

    def range_sum(self, l, r):
        # Return the sum of the elements from l (inclusive) to r (exclusive)
        return self.prefix_sum(r - 1) - self.prefix_sum(l - 1)

    def prefix_sum(self, x):
        # return sum upto and including element x
        z = x
        res = 0
        while z >= 0:
            res += self.bit[z]
            # Strip trailing zeros from z, and then take away one
            z = (z & (z + 1)) - 1
        return res

Resources