29. Divide Two Integers
On This Page
Given two integers dividend
and divisor
, divide two integers without using multiplication, division, and mod operator.
The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8
, and -2.7335
would be truncated to -2
.
Return the quotient after dividing dividend
by divisor
.
Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [−231, 231 − 1]
. For this problem, if the quotient is strictly greater than 231 - 1
, then return 231 - 1
, and if the quotient is strictly less than -231, then return -231
.
Example 1:
Input: dividend = 10, divisor = 3 Output: 3 Explanation: 10/3 = 3.33333.. which is truncated to 3.
Example 2:
Input: dividend = 7, divisor = -3 Output: -2 Explanation: 7/-3 = -2.33333.. which is truncated to -2.
Code
Idea:
- Remove decimals from both
divisor
anddivident
- Remember the result sign (
positive
or< 0
) - Subtract
divisor
fromdivident
until result is less or equal to zero.
Works but is too slow in case small number divisor
(1) and greater number dividend
(-2147483648):
class Solution:
def divide(self, dividend: int, divisor: int) -> int:
res = 0
dd = abs(dividend)
ds = abs(divisor)
sign = -1 if (dividend > 0 and divisor < 0) or (dividend < 0 and divisor > 0) else 1
while dd >= ds:
dd -= ds
res += 1
return sign * res
Improve idea:
- Sum
divisor
after “success” subtract until result of subtract is> 0
- Subtract
divisor
back until we can subtract it fromdividend
class Solution:
def divide(self, dividend: int, divisor: int) -> int:
res = 0
dd = abs(dividend)
ds = abs(divisor)
sign = -1 if (dividend > 0 and divisor <
0) or (dividend < 0 and divisor > 0) else 1
if divisor == -1 and dividend == -2147483648:
return 2147483647
elif divisor == 1:
return sign * dd
while dd >= ds:
tmp = ds
multiples = 1 # count of subtracts
while dd >= tmp: ## sum divisor
dd -= tmp
res += multiples # hense sum count of subtracts
tmp += tmp
multiples += multiples
else:
if dd >= ds:
dd -= ds
res += 1
return sign * res
Better idea
Idea: Bit manipulation
class Solution:
def divide(self, dividend, divisor):
positive = (dividend < 0) is (divisor < 0)
dividend, divisor = abs(dividend), abs(divisor)
res = 0
while dividend >= divisor:
curr_divisor, num_divisors = divisor, 1
while dividend >= curr_divisor:
dividend -= curr_divisor
res += num_divisors
curr_divisor = curr_divisor << 1
num_divisors = num_divisors << 1
if not positive:
res = -res
return min(max(-2147483648, res), 2147483647)
Explanation:
Another:
Time: $O(\log^2 n)$ Space: $O(1)$
class Solution:
def divide(self, dividend: int, divisor: int) -> int:
if dividend == -2**31 and divisor == -1:
return 2**31 - 1
sign = -1 if (dividend > 0) ^ (divisor > 0) else 1
res = 0
dvd = abs(dividend)
dvs = abs(divisor)
while dvd >= dvs:
k = 1
while k * 2 * dvs <= dvd:
k <<= 1
dvd -= k * dvs
res += k
return sign * res