1778A - Flip Flop Sum - 800

Updated: 2023-09-02
1 min read

On This Page

1778A - Flip Flop Sum (greedy, implementation, 800)

There are three possible conditions:

  1. -1 -1 - all negative. In this case sum -2 becomes sum 2. Plus 4.
  2. -1 1 - different, no sum change.
  3. 1 1 - all positive. 2 becomes -2. Diff is -4.

Solution

def solve():
    n = int(input())
    ar = list(map(int, input().split()))
    
    s = 0 # sum
 
    # three conditions: all 1, all -1, at least one -1
    has_diff = False
    has2_positive = 0
    has2_negative = 0
 
    s += ar[0]
    for idx in range(1, n):
        if ar[idx] == ar[idx-1]:
            if ar[idx] == -1:
                has2_negative = 4 # -2 -> +2, diff 4
            else:
                has2_positive = -4 # +2 => +1, diff 1
        else:
            has_diff = True
        s += ar[idx]
 
    if has2_negative:
        s += has2_negative
    elif has_diff:
        ...
    elif has2_positive:
        s += has2_positive
    print(s)

for _ in range(int(input())):
    solve()

Optimized solution:

def solve():
    n = int(input())
    ar = list(map(int, input().split()))
    res = sum(ar)

    for i in range(n-1):
        if ar[i] == ar[i+1] == -1:
            print(res + 4)
            return
    if res == n:
        res -= 4
    print(res)

for _ in range(int(input())):
    solve()