JavaScript code snippets

Updated: 2024-03-12
24 min read
[JavaScript TypeScript]

Web / Browser

get base URL

const getBaseURL = url => url.replace(/[?#].*$/, '');

getBaseURL('http://url.com/page?name=Adam&surname=Smith');
// 'http://url.com/page'

const url = new URL("https://example.com/login?user=someguy&page=news");

url.origin  // "https://example.com"
url.host  // "example.com"
url.protocol  // "https:"
url.pathname  // "/login"
url.searchParams.get('user')  // "someuser"

get URL parameters as object

const getURLParameters = url =>
  (url.match(/([^?=&]+)(=([^&]*))/g) || []).reduce(
    (a, v) => (
      (a[v.slice(0, v.indexOf('='))] = v.slice(v.indexOf('=') + 1)), a
    ),
    {}
  );

getURLParameters('google.com'); // {}
getURLParameters('http://url.com/page?name=Adam&surname=Smith');
// {name: 'Adam', surname: 'Smith'}

// One line
Object.fromEntries('http://url.com/page?name=Adam&surname=Smith'.split('?')[1].split('&').map(x=>x.split('=')))

if DOC element contains another element

const elementContains = (parent, child) =>
  parent !== child && parent.contains(child);

elementContains(
  document.querySelector('head'),
  document.querySelector('title')
);
// true
elementContains(document.querySelector('body'), document.querySelector('body'));
// false

Date

const {locale, timeZone} = Intl.DateTimeFormat().resolvedOptions();

const date = new Date(Date.now());

new Intl.DateTimeFormat("en-US", {
  timeZone: "America/Los_Angeles",
  minute: "numeric",
  hour: "numeric",
}).format(date);

// 9:45 AM (returns the current time in that timeZone)

is Date valid

const isDateValid = (...val) => !Number.isNaN(new Date(...val).valueOf());

isDateValid('December 17, 1995 03:24:00'); // true
isDateValid('1995-12-17T03:24:00'); // true
isDateValid('1995-12-17 T03:24:00'); // false
isDateValid('Duck'); // false
isDateValid(2023, 01, 22); // true
isDateValid(1995, 11, 17, 'Duck'); // false
isDateValid({}); // false

UNIX timestamp from Date

const getTimestamp = (date = new Date()) => Math.floor(date.getTime() / 1000);

getTimestamp(); // 1602162242

Compare dates / sort

export function compareDates(date1, date2) {
    if (!date1) {
        return 1; // move date1 to the end of the array
    }
    if (!date2) {
        return -1; // move date2 to the end of the array
    }

    // Convert the date strings to Date objects
    const d1 = new Date(date1);
    const d2 = new Date(date2);

    // Compare the dates
    if (d1.getTime() === d2.getTime()) {
        return 0; // dates are equal
    }
    if (d1 < d2) {
        return -1; // date1 is earlier than date2
    }
    return 1; // date1 is later than date2
}

const sortedItems = allItems.sort((itemA, itemB) =>
        compareDates(itemA.date, itemB.date)
    );

Login

Secure Your Node.js App with JSON Web Tokens

client.ts

// client.ts
import axios, { AxiosInstance } from 'axios';

export class Client {
  private _client: AxiosInstance;

  constructor(accessToken?: string, url?: string) {
    const apiUrl = this.selectApiTarget();
    let headers = {};
    if (accessToken !== undefined) {
      headers = {
        'Authorization': `Bearer ${accessToken}`
      };
    }
    this._client = axios.create({
      baseURL: url || apiUrl,
      headers: headers,
    });
  }

  private selectApiTarget(): string {
    let backendUrl = config.backend.url;
    if (window.location.host.includes("node.sharedtodos.com")) {
      backendUrl = config.backend.url.slice().replace("api.sharedtodos.com", "node-api.sharedtodos.com");
    }
    return `${backendUrl}/api/v1/`;
  }

  async getLoggedInUser(): Promise<User> {
    return await this._client.get('/user/me').then((response) => response.data);
  }

  async forgetLoggedInUser(): Promise<void> {
    return await this._client.delete('/user/me').then((response) => response.data);
  }

  async getTasks(listId: number): Promise<Task[]> {
    return await this._client.get(`boards/${listId}/tasks`).then((response) => response.data);
  }

  async deleteTask(listId: number, taskId: number) {
    return await this._client.delete(`boards/${listId}/tasks/${taskId}`).then((response) => response.data);
  }

  async createTask(listId: number, title: string, description: string) {
    const task: Task = {
      title: title,
      description: description,
    };
    return await this._client.post(`boards/${listId}/tasks`, task);
  }
  async updateTask(listId: number, taskId: string, task: Task) {
    return await this._client.put(`boards/${listId}/tasks/${taskId}`, task);
  }

  async login(email: string): Promise<string> {
    let data = new FormData();
    data.append('user_email', email);
    return await this._client.post(`login`, data, {
      headers: {'Content-Type': 'multipart/form-data' }
    }).then((response) => response.data.access_token);
  }
}

export const getClient = (accessToken?, url?): Client => new Client(accessToken, url);

config.ts

// config.ts
interface ConfigOptions {
  backend: { url: string };
  auth0: any;
  authentication: { provider: string };
  authorization: { embedUrl: string };
}
declare global {
  interface Window {
    _env_: any;
  }
}

const Config: ConfigOptions = {
  backend: {
    url:
      process.env.REACT_APP_BACKEND_URL ||
      window?._env_?.BACKEND_URL ||
      "http://localhost:8008",
  },
  auth0: {
    domain:
      process.env.AUTH0_DOMAIN ||
      window?._env_?.AUTH0_DOMAIN ||
      "acalla-demoapp.us.auth0.com",
    clientId:
      process.env.AUTH0_CLIENT_ID ||
      window?._env_?.AUTH0_CLIENT_ID ||
      "myClientID",
    audience:
      process.env.AUTH0_AUDIENCE ||
      window?._env_?.AUTH0_AUDIENCE ||
      "https://demoapi.server.com/v1/",
  },
  authentication: {
    provider: "auth0",
  },
  authorization: {
    embedUrl: window?._env_?.AUTHZ_EMBED_URL || "http://localhost:3000",
  }
};

export default Config;

Data Structures

export const shuffleArray = <T>(array: T[]): T[] => {
  for (let i = array.length - 1; i > 0; i--) {
    const j = Math.floor(Math.random() * (i + 1));
    [array[i], array[j]] = [array[j], array[i]];
  }
  return array;
};

Cheat Sheet

// Single-line comments start with two slashes.
/* Multiline comments start with slash-star,
   and end with star-slash */

// Statements can be terminated by ;
doStuff();

// ... but they don't have to be, as semicolons are automatically inserted
// wherever there's a newline, except in certain cases.
doStuff()

// Because those cases can cause unexpected results, we'll keep on using
// semicolons in this guide.

///////////////////////////////////
// 1. Numbers, Strings and Operators

// JavaScript has one number type (which is a 64-bit IEEE 754 double).
// Doubles have a 52-bit mantissa, which is enough to store integers
// up to about 9✕10¹⁵ precisely.
3; // = 3
1.5; // = 1.5

// Some basic arithmetic works as you'd expect.
1 + 1; // = 2
0.1 + 0.2; // = 0.30000000000000004
8 - 1; // = 7
10 * 2; // = 20
35 / 5; // = 7

// Including uneven division.
5 / 2; // = 2.5

// And modulo division.
10 % 2; // = 0
30 % 4; // = 2
18.5 % 7; // = 4.5

// Bitwise operations also work; when you perform a bitwise operation your float
// is converted to a signed int *up to* 32 bits.
1 << 2; // = 4

// Precedence is enforced with parentheses.
(1 + 3) * 2; // = 8

// There are three special not-a-real-number values:
Infinity; // result of e.g. 1/0
-Infinity; // result of e.g. -1/0
NaN; // result of e.g. 0/0, stands for 'Not a Number'

// There's also a boolean type.
true;
false;

// Strings are created with ' or ".
'abc';
"Hello, world";

// Negation uses the ! symbol
!true; // = false
!false; // = true

// Equality is ===
1 === 1; // = true
2 === 1; // = false

// Inequality is !==
1 !== 1; // = false
2 !== 1; // = true

// More comparisons
1 < 10; // = true
1 > 10; // = false
2 <= 2; // = true
2 >= 2; // = true

// Strings are concatenated with +
"Hello " + "world!"; // = "Hello world!"

// ... which works with more than just strings
"1, 2, " + 3; // = "1, 2, 3"
"Hello " + ["world", "!"]; // = "Hello world,!"

// and are compared with < and >
"a" < "b"; // = true

// Type coercion is performed for comparisons with double equals...
"5" == 5; // = true
null == undefined; // = true

// ...unless you use ===
"5" === 5; // = false
null === undefined; // = false

// ...which can result in some weird behaviour...
13 + !0; // 14
"13" + !0; // '13true'

// You can access characters in a string with `charAt`
"This is a string".charAt(0);  // = 'T'

// ...or use `substring` to get larger pieces.
"Hello world".substring(0, 5); // = "Hello"

// `length` is a property, so don't use ().
"Hello".length; // = 5

// There's also `null` and `undefined`.
null;      // used to indicate a deliberate non-value
undefined; // used to indicate a value is not currently present (although
           // `undefined` is actually a value itself)

// false, null, undefined, NaN, 0 and "" are falsy; everything else is truthy.
// Note that 0 is falsy and "0" is truthy, even though 0 == "0".

///////////////////////////////////
// 2. Variables, Arrays and Objects

// Variables are declared with the `var` keyword. JavaScript is dynamically
// typed, so you don't need to specify type. Assignment uses a single `=`
// character.
var someVar = 5;

// If you leave the var keyword off, you won't get an error...
someOtherVar = 10;

// ...but your variable will be created in the global scope, not in the scope
// you defined it in.

// Variables declared without being assigned to are set to undefined.
var someThirdVar; // = undefined

// If you want to declare a couple of variables, then you could use a comma
// separator
var someFourthVar = 2, someFifthVar = 4;

// There's shorthand for performing math operations on variables:
someVar += 5; // equivalent to someVar = someVar + 5; someVar is 10 now
someVar *= 10; // now someVar is 100

// and an even-shorter-hand for adding or subtracting 1
someVar++; // now someVar is 101
someVar--; // back to 100

// Arrays are ordered lists of values, of any type.
var myArray = ["Hello", 45, true];

// Their members can be accessed using the square-brackets subscript syntax.
// Array indices start at zero.
myArray[1]; // = 45

// Arrays are mutable and of variable length.
myArray.push("World");
myArray.length; // = 4

// Add/Modify at specific index
myArray[3] = "Hello";

// Add and remove element from front or back end of an array
myArray.unshift(3); // Add as the first element
someVar = myArray.shift(); // Remove first element and return it
myArray.push(3); // Add as the last element
someVar = myArray.pop(); // Remove last element and return it

// Join all elements of an array with semicolon
var myArray0 = [32,false,"js",12,56,90];
myArray0.join(";"); // = "32;false;js;12;56;90"

// Get subarray of elements from index 1 (include) to 4 (exclude)
myArray0.slice(1,4); // = [false,"js",12]

// Remove 4 elements starting from index 2, and insert there strings
// "hi","wr" and "ld"; return removed subarray
myArray0.splice(2,4,"hi","wr","ld"); // = ["js",12,56,90]
// myArray0 === [32,false,"hi","wr","ld"]

// JavaScript's objects are equivalent to "dictionaries" or "maps" in other
// languages: an unordered collection of key-value pairs.
var myObj = {key1: "Hello", key2: "World"};

// Keys are strings, but quotes aren't required if they're a valid
// JavaScript identifier. Values can be any type.
var myObj = {myKey: "myValue", "my other key": 4};

// Object attributes can also be accessed using the subscript syntax,
myObj["my other key"]; // = 4

// ... or using the dot syntax, provided the key is a valid identifier.
myObj.myKey; // = "myValue"

// Objects are mutable; values can be changed and new keys added.
myObj.myThirdKey = true;

// If you try to access a value that's not yet set, you'll get undefined.
myObj.myFourthKey; // = undefined

///////////////////////////////////
// 3. Logic and Control Structures

// The `if` structure works as you'd expect.
var count = 1;
if (count == 3){
    // evaluated if count is 3
} else if (count == 4){
    // evaluated if count is 4
} else {
    // evaluated if it's not either 3 or 4
}

// As does `while`.
while (true){
    // An infinite loop!
}

// Do-while loops are like while loops, except they always run at least once.
var input;
do {
    input = getInput();
} while (!isValid(input));

// The `for` loop is the same as C and Java:
// initialization; continue condition; iteration.
for (var i = 0; i < 5; i++){
    // will run 5 times
}

// Breaking out of labeled loops is similar to Java
outer:
for (var i = 0; i < 10; i++) {
    for (var j = 0; j < 10; j++) {
        if (i == 5 && j ==5) {
            break outer;
            // breaks out of outer loop instead of only the inner one
        }
    }
}

// The for/in statement allows iteration over properties of an object.
var description = "";
var person = {fname:"Paul", lname:"Ken", age:18};
for (var x in person){
    description += person[x] + " ";
} // description = 'Paul Ken 18 '

// The for/of statement allows iteration over iterable objects (including the built-in String, 
// Array, e.g. the Array-like arguments or NodeList objects, TypedArray, Map and Set, 
// and user-defined iterables).
var myPets = "";
var pets = ["cat", "dog", "hamster", "hedgehog"];
for (var pet of pets){
    myPets += pet + " ";
} // myPets = 'cat dog hamster hedgehog '

// && is logical and, || is logical or
if (house.size == "big" && house.colour == "blue"){
    house.contains = "bear";
}
if (colour == "red" || colour == "blue"){
    // colour is either red or blue
}

// && and || "short circuit", which is useful for setting default values.
var name = otherName || "default";

// The `switch` statement checks for equality with `===`.
// Use 'break' after each case
// or the cases after the correct one will be executed too.
grade = 'B';
switch (grade) {
  case 'A':
    console.log("Great job");
    break;
  case 'B':
    console.log("OK job");
    break;
  case 'C':
    console.log("You can do better");
    break;
  default:
    console.log("Oy vey");
    break;
}


///////////////////////////////////
// 4. Functions, Scope and Closures

// JavaScript functions are declared with the `function` keyword.
function myFunction(thing){
    return thing.toUpperCase();
}
myFunction("foo"); // = "FOO"

// Note that the value to be returned must start on the same line as the
// `return` keyword, otherwise you'll always return `undefined` due to
// automatic semicolon insertion. Watch out for this when using Allman style.
function myFunction(){
    return // <- semicolon automatically inserted here
    {thisIsAn: 'object literal'};
}
myFunction(); // = undefined

// JavaScript functions are first class objects, so they can be reassigned to
// different variable names and passed to other functions as arguments - for
// example, when supplying an event handler:
function myFunction(){
    // this code will be called in 5 seconds' time
}
setTimeout(myFunction, 5000);
// Note: setTimeout isn't part of the JS language, but is provided by browsers
// and Node.js.

// Another function provided by browsers is setInterval
function myFunction(){
    // this code will be called every 5 seconds
}
setInterval(myFunction, 5000);

// Function objects don't even have to be declared with a name - you can write
// an anonymous function definition directly into the arguments of another.
setTimeout(function(){
    // this code will be called in 5 seconds' time
}, 5000);

// JavaScript has function scope; functions get their own scope but other blocks
// do not.
if (true){
    var i = 5;
}
i; // = 5 - not undefined as you'd expect in a block-scoped language

// This has led to a common pattern of "immediately-executing anonymous
// functions", which prevent temporary variables from leaking into the global
// scope.
(function(){
    var temporary = 5;
    // We can access the global scope by assigning to the "global object", which
    // in a web browser is always `window`. The global object may have a
    // different name in non-browser environments such as Node.js.
    window.permanent = 10;
})();
temporary; // raises ReferenceError
permanent; // = 10

// One of JavaScript's most powerful features is closures. If a function is
// defined inside another function, the inner function has access to all the
// outer function's variables, even after the outer function exits.
function sayHelloInFiveSeconds(name){
    var prompt = "Hello, " + name + "!";
    // Inner functions are put in the local scope by default, as if they were
    // declared with `var`.
    function inner(){
        alert(prompt);
    }
    setTimeout(inner, 5000);
    // setTimeout is asynchronous, so the sayHelloInFiveSeconds function will
    // exit immediately, and setTimeout will call inner afterwards. However,
    // because inner is "closed over" sayHelloInFiveSeconds, inner still has
    // access to the `prompt` variable when it is finally called.
}
sayHelloInFiveSeconds("Adam"); // will open a popup with "Hello, Adam!" in 5s

///////////////////////////////////
// 5. More about Objects; Constructors and Prototypes

// Objects can contain functions.
var myObj = {
    myFunc: function(){
        return "Hello world!";
    }
};
myObj.myFunc(); // = "Hello world!"

// When functions attached to an object are called, they can access the object
// they're attached to using the `this` keyword.
myObj = {
    myString: "Hello world!",
    myFunc: function(){
        return this.myString;
    }
};
myObj.myFunc(); // = "Hello world!"

// What this is set to has to do with how the function is called, not where
// it's defined. So, our function doesn't work if it isn't called in the
// context of the object.
var myFunc = myObj.myFunc;
myFunc(); // = undefined

// Inversely, a function can be assigned to the object and gain access to it
// through `this`, even if it wasn't attached when it was defined.
var myOtherFunc = function(){
    return this.myString.toUpperCase();
};
myObj.myOtherFunc = myOtherFunc;
myObj.myOtherFunc(); // = "HELLO WORLD!"

// We can also specify a context for a function to execute in when we invoke it
// using `call` or `apply`.

var anotherFunc = function(s){
    return this.myString + s;
};
anotherFunc.call(myObj, " And Hello Moon!"); // = "Hello World! And Hello Moon!"

// The `apply` function is nearly identical, but takes an array for an argument
// list.

anotherFunc.apply(myObj, [" And Hello Sun!"]); // = "Hello World! And Hello Sun!"

// This is useful when working with a function that accepts a sequence of
// arguments and you want to pass an array.

Math.min(42, 6, 27); // = 6
Math.min([42, 6, 27]); // = NaN (uh-oh!)
Math.min.apply(Math, [42, 6, 27]); // = 6

// But, `call` and `apply` are only temporary. When we want it to stick, we can
// use `bind`.

var boundFunc = anotherFunc.bind(myObj);
boundFunc(" And Hello Saturn!"); // = "Hello World! And Hello Saturn!"

// `bind` can also be used to partially apply (curry) a function.

var product = function(a, b){ return a * b; };
var doubler = product.bind(this, 2);
doubler(8); // = 16

// When you call a function with the `new` keyword, a new object is created, and
// made available to the function via the `this` keyword. Functions designed to be
// called like that are called constructors.

var MyConstructor = function(){
    this.myNumber = 5;
};
myNewObj = new MyConstructor(); // = {myNumber: 5}
myNewObj.myNumber; // = 5

// Unlike most other popular object-oriented languages, JavaScript has no
// concept of 'instances' created from 'class' blueprints; instead, JavaScript
// combines instantiation and inheritance into a single concept: a 'prototype'.

// Every JavaScript object has a 'prototype'. When you go to access a property
// on an object that doesn't exist on the actual object, the interpreter will
// look at its prototype.

// Some JS implementations let you access an object's prototype on the magic
// property `__proto__`. While this is useful for explaining prototypes it's not
// part of the standard; we'll get to standard ways of using prototypes later.
var myObj = {
    myString: "Hello world!"
};
var myPrototype = {
    meaningOfLife: 42,
    myFunc: function(){
        return this.myString.toLowerCase();
    }
};

myObj.__proto__ = myPrototype;
myObj.meaningOfLife; // = 42

// This works for functions, too.
myObj.myFunc(); // = "hello world!"

// Of course, if your property isn't on your prototype, the prototype's
// prototype is searched, and so on.
myPrototype.__proto__ = {
    myBoolean: true
};
myObj.myBoolean; // = true

// There's no copying involved here; each object stores a reference to its
// prototype. This means we can alter the prototype and our changes will be
// reflected everywhere.
myPrototype.meaningOfLife = 43;
myObj.meaningOfLife; // = 43

// The for/in statement allows iteration over properties of an object,
// walking up the prototype chain until it sees a null prototype.
for (var x in myObj){
    console.log(myObj[x]);
}
///prints:
// Hello world!
// 43
// [Function: myFunc]
// true

// To only consider properties attached to the object itself
// and not its prototypes, use the `hasOwnProperty()` check.
for (var x in myObj){
    if (myObj.hasOwnProperty(x)){
        console.log(myObj[x]);
    }
}
///prints:
// Hello world!

// We mentioned that `__proto__` was non-standard, and there's no standard way to
// change the prototype of an existing object. However, there are two ways to
// create a new object with a given prototype.

// The first is Object.create, which is a recent addition to JS, and therefore
// not available in all implementations yet.
var myObj = Object.create(myPrototype);
myObj.meaningOfLife; // = 43

// The second way, which works anywhere, has to do with constructors.
// Constructors have a property called prototype. This is *not* the prototype of
// the constructor function itself; instead, it's the prototype that new objects
// are given when they're created with that constructor and the new keyword.
MyConstructor.prototype = {
    myNumber: 5,
    getMyNumber: function(){
        return this.myNumber;
    }
};
var myNewObj2 = new MyConstructor();
myNewObj2.getMyNumber(); // = 5
myNewObj2.myNumber = 6;
myNewObj2.getMyNumber(); // = 6

// Built-in types like strings and numbers also have constructors that create
// equivalent wrapper objects.
var myNumber = 12;
var myNumberObj = new Number(12);
myNumber == myNumberObj; // = true

// Except, they aren't exactly equivalent.
typeof myNumber; // = 'number'
typeof myNumberObj; // = 'object'
myNumber === myNumberObj; // = false
if (0){
    // This code won't execute, because 0 is falsy.
}
if (new Number(0)){
   // This code will execute, because wrapped numbers are objects, and objects
   // are always truthy.
}

// However, the wrapper objects and the regular builtins share a prototype, so
// you can actually add functionality to a string, for instance.
String.prototype.firstCharacter = function(){
    return this.charAt(0);
};
"abc".firstCharacter(); // = "a"

// This fact is often used in "polyfilling", which is implementing newer
// features of JavaScript in an older subset of JavaScript, so that they can be
// used in older environments such as outdated browsers.

// For instance, we mentioned that Object.create isn't yet available in all
// implementations, but we can still use it with this polyfill:
if (Object.create === undefined){ // don't overwrite it if it exists
    Object.create = function(proto){
        // make a temporary constructor with the right prototype
        var Constructor = function(){};
        Constructor.prototype = proto;
        // then use it to create a new, appropriately-prototyped object
        return new Constructor();
    };
}

// ES6 Additions

// The "let" keyword allows you to define variables in a lexical scope, 
// as opposed to a function scope like the var keyword does.
let name = "Billy";

// Variables defined with let can be reassigned new values.
name = "William";

// The "const" keyword allows you to define a variable in a lexical scope
// like with let, but you cannot reassign the value once one has been assigned.

const pi = 3.14;

pi = 4.13; // You cannot do this.

// There is a new syntax for functions in ES6 known as "lambda syntax".
// This allows functions to be defined in a lexical scope like with variables
// defined by const and let. 

const isEven = (number) => {
    return number % 2 === 0;
};

isEven(7); // false

// The "equivalent" of this function in the traditional syntax would look like this:

function isEven(number) {
    return number % 2 === 0;
};

// I put the word "equivalent" in double quotes because a function defined
// using the lambda syntax cannnot be called before the definition.
// The following is an example of invalid usage:

add(1, 8);

const add = (firstNumber, secondNumber) => {
    return firstNumber + secondNumber;
};

Cheat Sheet Typescript

// There are 3 basic types in TypeScript
let isDone: boolean = false;
let lines: number = 42;
let name: string = "Anders";

// But you can omit the type annotation if the variables are derived
// from explicit literals
let isDone = false;
let lines = 42;
let name = "Anders";

// When it's impossible to know, there is the "Any" type
let notSure: any = 4;
notSure = "maybe a string instead";
notSure = false; // okay, definitely a boolean

// Use const keyword for constants
const numLivesForCat = 9;
numLivesForCat = 1; // Error

// For collections, there are typed arrays and generic arrays
let list: number[] = [1, 2, 3];
// Alternatively, using the generic array type
let list: Array<number> = [1, 2, 3];

// For enumerations:
enum Color { Red, Green, Blue };
let c: Color = Color.Green;
console.log(Color[c]); // "Green"

// Lastly, "void" is used in the special case of a function returning nothing
function bigHorribleAlert(): void {
  alert("I'm a little annoying box!");
}

// Functions are first class citizens, support the lambda "fat arrow" syntax and
// use type inference

// The following are equivalent, the same signature will be inferred by the
// compiler, and same JavaScript will be emitted
let f1 = function (i: number): number { return i * i; }
// Return type inferred
let f2 = function (i: number) { return i * i; }
// "Fat arrow" syntax
let f3 = (i: number): number => { return i * i; }
// "Fat arrow" syntax with return type inferred
let f4 = (i: number) => { return i * i; }
// "Fat arrow" syntax with return type inferred, braceless means no return
// keyword needed
let f5 = (i: number) => i * i;

// Interfaces are structural, anything that has the properties is compliant with
// the interface
interface Person {
  name: string;
  // Optional properties, marked with a "?"
  age?: number;
  // And of course functions
  move(): void;
}

// Object that implements the "Person" interface
// Can be treated as a Person since it has the name and move properties
let p: Person = { name: "Bobby", move: () => { } };
// Objects that have the optional property:
let validPerson: Person = { name: "Bobby", age: 42, move: () => { } };
// Is not a person because age is not a number
let invalidPerson: Person = { name: "Bobby", age: true };

// Interfaces can also describe a function type
interface SearchFunc {
  (source: string, subString: string): boolean;
}
// Only the parameters' types are important, names are not important.
let mySearch: SearchFunc;
mySearch = function (src: string, sub: string) {
  return src.search(sub) != -1;
}

// Classes - members are public by default
class Point {
  // Properties
  x: number;

  // Constructor - the public/private keywords in this context will generate
  // the boiler plate code for the property and the initialization in the
  // constructor.
  // In this example, "y" will be defined just like "x" is, but with less code
  // Default values are also supported

  constructor(x: number, public y: number = 0) {
    this.x = x;
  }

  // Functions
  dist(): number { return Math.sqrt(this.x * this.x + this.y * this.y); }

  // Static members
  static origin = new Point(0, 0);
}

// Classes can be explicitly marked as implementing an interface.
// Any missing properties will then cause an error at compile-time.
class PointPerson implements Person {
    name: string
    move() {}
}

let p1 = new Point(10, 20);
let p2 = new Point(25); //y will be 0

// Inheritance
class Point3D extends Point {
  constructor(x: number, y: number, public z: number = 0) {
    super(x, y); // Explicit call to the super class constructor is mandatory
  }

  // Overwrite
  dist(): number {
    let d = super.dist();
    return Math.sqrt(d * d + this.z * this.z);
  }
}

// Modules, "." can be used as separator for sub modules
module Geometry {
  export class Square {
    constructor(public sideLength: number = 0) {
    }
    area() {
      return Math.pow(this.sideLength, 2);
    }
  }
}

let s1 = new Geometry.Square(5);

// Local alias for referencing a module
import G = Geometry;

let s2 = new G.Square(10);

// Generics
// Classes
class Tuple<T1, T2> {
  constructor(public item1: T1, public item2: T2) {
  }
}

// Interfaces
interface Pair<T> {
  item1: T;
  item2: T;
}

// And functions
let pairToTuple = function <T>(p: Pair<T>) {
  return new Tuple(p.item1, p.item2);
};

let tuple = pairToTuple({ item1: "hello", item2: "world" });

// Including references to a definition file:
/// <reference path="jquery.d.ts" />

// Template Strings (strings that use backticks)
// String Interpolation with Template Strings
let name = 'Tyrone';
let greeting = `Hi ${name}, how are you?`
// Multiline Strings with Template Strings
let multiline = `This is an example
of a multiline string`;

// READONLY: New Feature in TypeScript 3.1
interface Person {
  readonly name: string;
  readonly age: number;
}

var p1: Person = { name: "Tyrone", age: 42 };
p1.age = 25; // Error, p1.age is read-only

var p2 = { name: "John", age: 60 };
var p3: Person = p2; // Ok, read-only alias for p2
p3.age = 35; // Error, p3.age is read-only
p2.age = 45; // Ok, but also changes p3.age because of aliasing

class Car {
  readonly make: string;
  readonly model: string;
  readonly year = 2018;

  constructor() {
    this.make = "Unknown Make"; // Assignment permitted in constructor
    this.model = "Unknown Model"; // Assignment permitted in constructor
  }
}

let numbers: Array<number> = [0, 1, 2, 3, 4];
let moreNumbers: ReadonlyArray<number> = numbers;
moreNumbers[5] = 5; // Error, elements are read-only
moreNumbers.push(5); // Error, no push method (because it mutates array)
moreNumbers.length = 3; // Error, length is read-only
numbers = moreNumbers; // Error, mutating methods are missing

// Tagged Union Types for modelling state that can be in one of many shapes
type State = 
  | { type: "loading" }
  | { type: "success", value: number }
  | { type: "error", message: string };

declare const state: State;
if (state.type === "success") {
  console.log(state.value);
} else if (state.type === "error") {
  console.error(state.message);
}

// Template Literal Types
// Use to create complex string types
type OrderSize = "regular" | "large";
type OrderItem = "Espresso" | "Cappuccino";
type Order = `A ${OrderSize} ${OrderItem}`;

let order1: Order = "A regular Cappuccino";
let order2: Order = "A large Espresso";
let order3: Order = "A small Espresso"; // Error

// Iterators and Generators

// for..of statement
// iterate over the list of values on the object being iterated
let arrayOfAnyType = [1, "string", false];
for (const val of arrayOfAnyType) {
    console.log(val); // 1, "string", false
}

let list = [4, 5, 6];
for (const i of list) {
   console.log(i); // 4, 5, 6
}

// for..in statement
// iterate over the list of keys on the object being iterated
for (const i in list) {
   console.log(i); // 0, 1, 2
}

// Type Assertion

let foo = {} // Creating foo as an empty object
foo.bar = 123 // Error: property 'bar' does not exist on `{}`
foo.baz = 'hello world' // Error: property 'baz' does not exist on `{}`

// Because the inferred type of foo is `{}` (an object with 0 properties), you 
// are not allowed to add bar and baz to it. However with type assertion,
// the following will pass:

interface Foo { 
  bar: number;
  baz: string;
}

let foo = {} as Foo; // Type assertion here
foo.bar = 123;
foo.baz = 'hello world'

Resources